(a)(i) 1.

- slows down air movement/reduces wind effect AW;
- ref. to transpired water vapour trapped inside curled leaf AW;
- ref. to diffusion gradient reduced/humidity increased inside curled leaf;
- prevents water loss/less + transpiration/water loss/evaporation;
- reduces surface area + exposed AW;
max. [2]

2. prevents evaporation/loss + of water from leaf; (R) waterproof unqual. reflects radiant light/reduces heating effect of sun AW;
max. [1]
(ii)
better access AW to + water/mineral salts; $R$ goes deeper unqual. larger surface area for absorption; (R) anchorage
max. [1]
3. 

- ref. to storage of water;
- ref. to small surface area to volume AW;
- less water loss/less transpiration;
- ref. to ability to photosynthesise;
max. [2]
(b)
- less surface area;
- less light absorbed;
- less stomata;
- less absorption of carbon dioxide;
- less transpiration;
- less movement of minerals/water + from roots;
- less chlorophyll/chloroplasts;
- less photosynthesis; (A) description
max. [2]
(c)(i)(ii) MARK COLUMNS INDEPENDENTLY

| description <br> of process | name of <br> process | variable that, if increased, would <br> speed up the process |
| :--- | :--- | :--- |
| absorption <br> of water <br> from the <br> soil | osmosis; <br> A) diffusion | concentration of minerals in root hairs/ <br> water in soil/temperature/transpiration (or <br> any factor that increases it)/number of <br> root hairs;; |
| using water <br> to form <br> glucose | photosynthesis; | light/conc. of carbon <br> dioxide/temperature/water/chlorophyll// <br> chloroplasts; |
| movement <br> of water <br> vapour out <br> of leaves | transpiration; <br> A) diffusion | temperature/wind speed/ <br> dryness of air/number of size of stomata; <br> A) ref. to light/heat |


| Question |  | Answers <br> body divided into/segmented three parts / head, thorax and abdomen <br> (one pair of) antennae / feelers <br> wings <br> three pairs / 6 legs compound eyes |  | Marks | Additional Guidance <br> R segmented body unqualified do not accept arthropod features |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 2 | (a) |  |  | [max 3] |  |
| (b) |  | arthropod / Arthropoda |  | [1] | must have arthr so accept arthropod but reject anthropod |
|  | (c) |  | chromosome nucleus mitochondria chloroplast plasmid nucleolus |  | Note: Apply list rule |
|  | (d) | $\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$ $5$ | two groups: $1-6$ and $11 \& 12$ migrate to New Zealand 1-6, New Caledonia / indirect / migration A 11\&12, direct (Australia) / migration B correct example of (evolutionary) relationship / DNA similarity, e.g. 13 \& 14 most distantly related from others / 9 \& 10 most closely related to each other ref to, clade(s) / cladogram | $[\max 3]$ |  |


| 2 | (e) | 1  <br> 2  <br> 3  <br> 4  <br> 4  <br> 5  <br> 6  <br> 7  <br> 7  <br> 8  <br> 9  | adapt to environment / conditions in new places are different <br> competition between individuals <br> struggle for existence <br> ref to variation <br> survival of fittest / those that are better adapted <br> survive <br> reproduce, pass on their alleles; A genes I traits <br> mutations / changes in DNA <br> change in the gene pool / AW <br> changes to physical / behaviour (of species), e.g. mating behaviour | [max 4] | A conditions on different islands are different <br> Mpt 9 R changes of individuals |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | [Total: 13] |  |  |


|  | stion | Answers | Marks | Additional Guidance |
| :---: | :---: | :---: | :---: | :---: |
| 3 | (a) | T. castane <br> 1 wet / AW ; <br> 2 any evidence from the table <br> e.g. hot: (A) 100\% - (B) warm: (C) $86 \%$ - (D) 13\% / cold: (E) 29\% - (F) 0\% ; <br> 3 in wet conditions, decreasing survival with decreasing temperature ; <br> 4 any suitable two points from the table (i.e. (A) $100 \%-(C) 86 \%-(E) 29 \%)$; <br> T. confus <br> 5 dry / AW ; <br> 6 any evidence from the table e.g. hot: (A) 0\% - (B) warm: (C) $14 \%-$ (D) $87 \% /$ cold: (E) 71\% - (F) 100\% ; <br> 7 in wet conditions, increasing survival with decreasing temperature ; <br> 8 any suitable two points from the table (i.e. (A) $0 \%-(C) 14 \%-(E) 71 \%$ ) ; | [max 4] | Note: marking points are linked in pairs e.g. MP1 pairs with M <br> Note: at least two data points within species are required as 'evidence’ <br> ignore ref. to temperature for MP1 and MP2 <br> ignore ref to temperature for MP5 and MP6 |


| Question |  |  | Answers | Marks | Additional Guidance |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 3 | (b) |  | competition ; example of competition (food / space) ; one species better adapted / AW ; | [2] | R 'survive better' unqualified <br> A survival of the fittest in context of adaptation |
|  | (c) | $2$ |  | [4] | Note: marking points 1, 2, 3 are free-standing. MP 4 is linked to MP 3. <br> allow ECF from MP1 to MP2 <br> allow ECF from MP2 to MP3 <br> allow ECF from MP3 to MP4 |
|  |  |  | mutation ; <br> mutation, rare event ; <br> (white) allele is recessive / ora ; only expressed in homozygote recessive ; <br> selection ; disadvantage / AW ; | [max 2] | $\mathbf{R}$ gene <br> A correct ref to parents - both must be heterozygous / homozygous / one of each <br> A reason for being so |
|  |  |  | decomposition ; bacteria / fungi, release enzymes / digest ; breakdown protein (in faeces) $\rightarrow$ amino acids ; deamination ; amino acids $\rightarrow$ ammonia ; breakdown urea $\rightarrow$ ammonia (+ carbon dioxide); (undigested) carbohydrate (in faeces) respired ; | [max 4] | A bacteria / fungi are decomposers A feed saprophytically |
|  |  |  |  | tal: 16] |  |

4 (a (length of) DNA / part of chromosome / on a chromosome , that codes for a protein or polypeptide or enzyme / controls a characteristic ;
(b) $\mathrm{H}^{\mathrm{N}} \mathrm{H}^{\mathrm{S}} \times \mathrm{H}^{\mathrm{N}} \mathrm{H}^{\mathrm{S}}$; accept N and S $\mathrm{H}^{\mathrm{N}}, \mathrm{H}^{\mathrm{S}}+\mathrm{H}^{\mathrm{N}}, \mathrm{H}^{\mathrm{S}}$; gametes must be clear accept on dotted line or in Punnett square
$\mathrm{H}^{\mathrm{S}} \mathrm{H}^{\mathrm{s}}$; ecf from correct gametes if wrong parental genotype
(c) check http://www.sicklecellsociety.org/education/healthpr.htm for AVPs

1 red (blood) cells become, sickle shaped / distorted / AW ; R abnormal unqualified
2 in areas of low oxygen concentrations / in tissues ;
3 fewer / less elastic / less flexible / short-lived, red blood cells ; ora
4 less haemoglobin ;
5 blood / haemoglobin, less efficient at transporting oxygen ; R no oxygen
6 less respiration ; $\mathbf{R}$ no respiration
7 less energy / fatigued / exhaustion / less active / feeling faint or tired / breathless;
8 capillaries are blocked;
9 pain ;
10 death of tissues linked to blood supply ;
11 'sickle cell crisis' ; A 'attacks needing oxygen'
12 slow / poor, growth;
13 susceptible to infections ;
14 reduced life span;
15 AVP;
16 AVP;
(d) 1 idea that areas with high percentage of sickle cell (allele) are places with malaria;
$2 \quad \mathrm{H}^{\mathrm{s}} \mathrm{H}^{\mathrm{S}}$ / homozygous recessive, reduced life span because of sickle cell anaemia;
$3 \quad \mathrm{H}^{\mathrm{N}} \mathrm{H}^{\mathrm{N}}$ / homozygous dominant / without $\mathrm{H}^{\mathrm{S}}$, susceptible to malaria / AW ;
$4 \quad \mathrm{H}^{\mathrm{N}} \mathrm{H}^{\mathrm{s}}$ / heterozygous / carrier/ with $\mathrm{H}^{\mathrm{s}}$, resistant / not affected / less susceptible;

A $H^{s} H^{s} \quad \mathbf{R}$ immune / immunity
$5 \quad H^{N} H^{s}$ (carrier) survive and have children / $\mathrm{H}^{\mathrm{N}} \mathrm{H}^{\mathrm{N}}$ or $\mathrm{H}^{\mathrm{S}} \mathrm{H}^{\mathrm{s}}$ do not ;
$6 \quad H^{N} H^{s}$ / carrier, pass on the allele / $H^{s}$;
7 (if $\mathrm{H}^{\mathrm{N}} \mathrm{H}^{\mathrm{S}} \times \mathrm{H}^{\mathrm{N}} \mathrm{H}^{\mathrm{S}}$ ) 1 in 4 chance of, $\mathrm{H}^{\mathrm{S}} \mathrm{H}^{\mathrm{S}}$ / homozygous recessive ;
82 in $4 / 50 \% / 1 / 2$, have advantage of resistance to malaria ;
(e) 1 idea that distinct groups / categories; ref to bar chart

2 either sickle cell anaemia $\left(H^{S} H^{S}\right)$, sickle cell trait $\left(H^{N} H^{S}\right)$, normal $\left(H^{N} H^{N}\right) /$ or normal, anaemic ; A 'some people have disease, some do not' A 'some people have the allele, some do not'
3 no intermediates / no continuous scale of anaemia / AW ;
4 genetic condition / environment has no effect (or its expression) ;
A ref to small number of, genes / alleles, involved

